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ABSTRACT

Body morphology is thought to have heavily in uenced thelavo
tion of neural architecture. However, the extent of thigiattion
and its underlying principles are largely unclear. To hedpeluci-
date these principles, we examine the arti cial evolutidrady-
pothetical nervous system embedded in a sh-inspired anifrtze
aim is to observe the evolution of neural structures in ietato
both body morphology and required motor primitives. Ouest
gations reveal that increasing the pressure to evolve arwéthge
of movements also results in higher levels of neural symmnéte
further examine how different body shapes affect the eiaiubf
neural structure; we nd that, in order to achieve optimalveio
ments, the neural structure integrates and compensatesyor-
metrical body morphology. Our study clearly indicates ttier-
ent parts of the animat — speci cally, nervous system andtpbain
— evolve in concert with, and become highly functional witkpect

to, the other parts. The autonomous emergence of morplealogi

and neural computation in this model contributes to urngithe
surprisingly strong coupling of such systems in nature.

Categories and Subject Descriptors
1.2.6 [Learning]: Metrics—Connectionism and Neural Nets

General Terms
Algorithms
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1. INTRODUCTION

Genetic evidence reveals that animals having distinctipes
of body symmetry are in many ways related [17, 18]. An abun-
dance of common genetic markers (certain homeobox genes [24
8]) present in both the Hydra, a very primitive radially syetnic
jelly sh, and the more advanced Bilateria have been iderttias
being associated with pattern formation. It is conjectutext di-
versity arose from a common ancestor [15, 10, 16] with a nesvo
system that evolved in concert with the body plan [9].

Over the years, several bodies of research have attempgdat to
cidate the mechanisms of nervous system evolution in ogldat
the neurological basis of behaviour. Ghysen [10] asks haw-fu
tional coherence can arise in many different lifeforms eveugh
their respective lifestyles and habitats are richly digerslolland
[11] explores the genetic basis of functional componentsiwihe
central nervous system by searching for common genetic homo
logues. Murakami et al. [19] considers the lamprey whilelexp
ing how the developmental plan has evolved and arisen in more
advanced vertebrates.

Seemingly complex behaviour can also originate from neddyi
simple neural structures. As rst shown in “Vehicles: Expants
in Synthetic Psychology', Braitenberg [7] posited sevéhalught-
experiments in which the mechanistic and behavioural ptigzse
of a simple agent were progressively complexi ed. Whilstgh
mechanisms were grounded in simplistic sensory-motonymath,
they were nevertheless able to resultin a complex behaliceper-
toire. In such a spirit of simplicity, yet with the aim of bagical
relevancy, models have become progressively centric tohlyisi-
cally realistic behaviour. The work of Karl Sims [25], whopdared
how abstract neural control systems could implement a etlos
animal-like behaviours in severatti cial creatures, is a good ex-
ample. Others (e.g. [5, 4]) have further asked how brain axuy b
can evolve in a coupled fashion. Together with neural cdntine
body and environment are also argued to be core to the evpari
process in so-called “embodied intelligence”, see e.g].[28

The model of Schramm et al. [22] addresses body morphology
and control as a coupled process. Their model employs amex\ol
genetic regulatory network (GRN) that controls cell gron@ells,
which in the model are physical point masses, are grown ane co
nected together with springs. Actuation of lateral spritigs pro-
vides movement. A variety of body morphologies, coupledi® t



control mechanism, are then demonstrated to yield diftetsgres
of movement. The work of Jones et al. [13] studies how motor
neuron con gurations evolve to become bilaterally symmeetin
an elongated animat, motors are distributed around thetHeofy
the body and can evolve into bothdial andbilateral con gura-
tions. In the swimming task of that study, evolution led niqtairs
to assume bilateral con gurations. The ef ciency of bilesemor-
phology in directional movement is further stressed in [Blore
recently, Bongard [3] examined the evolution of body planrmo
phogenesis nding that when lifetime developmental change
permitted, greater robustness pervades behaviour genmerat

In this paper, we address how neural structure evolves twaon
an anguilliform agent required to perform a set of differem-
tor skills. Under such enhanced and realistic scenariosnstri-
cal properties and the integration with body morphologyehaeen
subject to analysis. During evolution, neural structuranges due
to the genetically determined positions of connectionsrendons.
Connection weights are computed as a function of intermalro
Euclidean distance. The large search space of all possiieah
structures has enabled us to observe the autonomous arasedbi
evolution of the coupled control system.

A major point in this study is how the need to evolve different
motor skills affects the structural distribution and synimef the
neural control system. In a rst scenario the agent is regfuto
undertake fast, ef cient forward motion: this task elicitee evo-
lution of only one oscillatory-type motor primitive. In acmd
scenario, the agent is required to perform left and righidwrhile
maintaining forward motion. This task is more complex and re
quires a correct synergy between motor primitives. In althoe-

Inactive Active

Figure 1: Upper: Visualisation of the model agent used in the
study. The lateral circles depict the positions of motor netons
which serve to actuate sets of lateral springd.ower: A diagram

nario, we then impose asymmetry onto the body plan and again showing how motor pairs actuate a triplet of body segments. A

investigate how this affects the evolution of neural suuet The
main nding is that an increased number of motor primitivee-p
motes the evolution of highly symmetrical neural strucsur§Ve
hypothesize that higher movement requirements lead évoltn
ne-tuning the underlying movement mechanism. Howeverewh
the body morphology is further asymmetrically structutée,neu-
ral architecture adapts and compensates to achieve ojtjiinghe
required set of movements.

The rest of this paper is laid out as follows. In Section 2, the
model and encompassing simulation environment are destrib
Section 3 then outlines the experimental setup. Resultprae
sented in Section 4. We conclude in Section 5.

2. MODEL

A sh-like animat with a neural controller inspired by pritivie
neural organisation has been implemented. The animatig inod-
phology is three dimensional and has a spring structure thath
the width of the animat is 1.26, and the length of a body segisen
3.525; thus, the length of the whole animat is 52.875. Thaheeg
are not those of a particular animal, nor do they represetitpéar
units, nevertheless, they approximately reproduce thpgtimns
of an elongated swimming animal.

When particular springs are compressed, geometry is dlgaré

pair of motors per triplet allows for a natural generation of
body curvature when one of those motors becomes active.

The level of compression applied during this actuation essds
proportional to the output activation of the respectiveanoeuron.

2.2 Computational neural system

The neural dynamics are modelled with leaky integratorse Th
membrane potential; of a neuron is [2]:

X
uj +
i=1

= wii @ + |

de 1
i €
where ; is the neuron discharge time constantjs a vector of
presynaptic connection weights ahdis an external input current.
The activitya; of a neuron is computed #snh(u;). If a neuron is
inhibitory then all of its outgoing connection weights aegative.
All motor neurons are excitatory and have a time constantevaf
1. This is to model biological muscles that have only periofls
contraction (excitation) or relaxation. The output of aegivmotor
m is computed ad=1 + exp( um 1). This yields a positive
value which is then used in driving the compression levelthef
associated springs.

movement is generated, see Fig. 1. The degree of compression

(actuation) is given by a neural controller. An abstract slaof
water force as described in [12, 23] is modelled to allow s$ated
movement through a liquid environment.

2.1 Motor system

Fig. 1 shows how bilaterally arranged pairs of motor neurons
actuate triplets of body segments. This arrangement abosisgle
motor to induce a degree of curvature in the body, see Figwe{).

2.3 Architectural neural system

The neural system consists of 22 neurons: 10 motor neurons,
i.e. two for each triplet of body segments, an equal numbeieef
scending neurons and 2 head-CPG neurons as shown in Figis2. Th
setting was found to be suf cient for generating the requiset
of movements whilst maintaining at the same time a minirtialis
approach. Connectivity is established according to baoggEmes
except for those connections within the head-CPG struethieh



HEAD-CPG

Figure 2: A schematic of the agent's neural control system.
LM, LDN, RDN and RM refer to Left Motors, Left Descending
Neurons, Right Descending Neurons and Right Motors respec-
tively. Dotted lines signify evolved connections. The HEAD
CPG is further considered a single functional module — incld-
ing both neurons and connections; its presence in the pheno-
type is determined by a single boolean parameter.

is considered a whole functional module. Connections betviee
descending neurons are determined as follows: a conndation
a left descending neuron (LDINto the equivalent right descend-
ing neuron (RDN) is mirrored with a connection from RONo
LDN;. This permits the formation of coupled oscillators. Thespre
ence of individual descending connections is determined bgt
of boolean genes.

2.3.1 Synaptic connectivity.

An important aspect of this model is the effect that neuraicst
ture has on synaptic ef cacy. Speci cally, weight connecis are
derived from the interneuronal Euclidean distance. Theasltwo
neurons are together, the higher the weight value betwesn,th
)

wij = =dj

This mechanism for the head triplet of body segments is tegbic
in Fig. 3.
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Figure 3: The manner in which neuron positions are evolved as
shown for the rst triplet of body segments. The x-dimensiors
of the descending neurons (LD and RD) can move closer or fur-
ther from their respective motor neurons (LM and RM). The
head-CPG neurons, which are only present within the head
triplet, move towards or away from each other along the y-
dimension. Interneuronal distances are used in deriving wight
connection values.

2.3.2 Turning mechanism.

The agent is endowed with a pair of sensors located at the top
of the head segment. The sensor that is found to be closeast to a
environmental target is designated thimner and becomes active
whilst the other is designated thaser and remains dormant. In
order for the animat to turn, one of its sides needs to be tartua
more strongly. To do this, the winning sensor affectatio of
left and right force magnitudes LF:RF that are applied toléfe
and right actuated springs respectively. When the ratidasel
towards either LF or RF, as determined by the winning setier,
body geometry is altered. The ratio is initialised to 1:1 nieg
that initially there is no bias towards the left or right. ®hghout
a simulation, this ratio changes according to the aboveritest
winner-takes-all strategy, as shown:

RS
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where has been empirically set to 20.0 to ensure that a suitable where | and ; are the updates to LF and RF respectively and

range of weights can be generated. Accordingly, the positio

a neuron is changed through a process of simulated evolulion
other words, the weight values are implicitly represen@uly the
positions of the descending and head-CPG neurons are dvolve
The motor neuron positions remain xed in place. The distanc
of a given descending neuron from the centre of the animat (i.
in the horizontal x-plane) and the positions of the head-@eG
rons along the vertical y-dimension are determined by eiariu

andn; are the outputs of the left and right motor neurons respec-
tively. Thus the force magnitude is increased for the wigrside

of the animat and decreased for the losing side. This ratinghs
smoothly due to the effect of the factor 0.01 in Eq. 3. The agen
can turn smoothly without hindrance to the stability of thygics
model; during testing, it was found that too sharp a turndcaluse

the animat to fold in on itself. A visualisation of the turgimech-
anism is presented later in the results section.



3. EXPERIMENTAL SETUP

The motivation of these experiments is to study the effeat th
body morphology has on the evolution of neural structureraack-
over, how a requirement for different motor primitives cdfeet
such structure. In order to do this, the following three sdétex-
periments were performed:

(a) the agent is required to undertake fast, ef cient forlvir
comotion.

(b) the agent is additionally required to undertake turriieg
haviour.

(c) asin (a) but with an asymmetric body plan as in Fig. 4.

The rst two scenarios, (a) and (b), examine how neural $timec
evolves in relation to a symmetric body morphology. A naltura
extension of this is then to ask how an asymmetrical body mor-
phology affects neural structure, i.e. Scenario (c).

3.1 Evolutionary process

Arti cial evolution is used to evolve a population of 40 invitilu-
als. For each scenario, we conducted 50 independently ¢ eede
except for Scenario (c) in which the number was doubled toide
both a left-biased and a right-biased body asymmetry. The-ge
type and the constraints of the search space are shown i Fig.
Note that the value ranges given for NRAD and HY are actually
bounded by the geometrical constraints of the animat (tef€ec-
tion 2). A maximum of 2200 generations is permitted for each
evolutionary run. This number of generations was foundrapri
preliminary runs to be suf cient for the tness to reach atelau.

NI NTC E?DaGd_ DCOP | DES | NRAD| HY
10112 | 10112 | 1 5 8 10 2
BOOL |[10, 50] | BOOL | BOOL | BOOL |[0, 0.63]|[0,10.58

Figure 5: The agent's genotype. Each box holds the following

The animat is evaluated in a two dimensional plane such that information: gene type (top); gene count (middle); initiaisa-

only movements generated by the left and right halves of geata
as partitioned by the sagittal plane, are evaluated. In&ten(a)
and (c) the tness of an agent is determined by how far it caimsw
in a forwards direction. For Scenario (b), the animat is extdd
three times. For each evaluation, the agent is required tm sw
towards a target in one of three different locatiods,(3=2 , =2
or north, west and east w.r.t. the starting orientation efghimat)
and at a distance that is suf ciently far enough that the atioan
never reach it. The sum of these distances is then taken asdke
measure.

In order to observe the evolution of symmetrical pattermaga-
sure of neural symmetry was introduced:

sym= ?1) jd(LDN;j;c) d(RDN;;ci)j (4)

i=1

where the functiord; is a measure of Euclidean distance. LDN
and RDN represent the positions of the left and right descending
neurons respectively; represents the position of the centre point
along the sagittal plane. An advantage of using this measthet

we are able to observe the process by which symmetry witl@n th
neural structure changes during evolution. High levels efral
symmetry will thus have a minimalymvalue.

Figure 4: Asymmetric body morphologies: in Scenario (c) (se
Section 3), the body plan is constrained to adopt one of two
body curvatures (curved rightor curved lef).

tion range or BOOL if boolean values (lower). The gene types
are: NI (neuron is inhibitory); NTC (neuronal time constants);
head-CPG (presence of head-CPG structure); DCOP (coupled
connections between descending pairs of neurons); DES (fzre
ence of descending connections); NRAD (radius position ofed
scending neuron, that is, the distance of the neuron from the
central midline of the animat); HY (y-coordinate position of
neuron in head-CPG, if head-CPG structure is present). For
NI and NTC, it is possible for there to be 10 or 12 genes; 12 if
a head-CPG structure exists. For the same reason, it is furér
possible for there to be 0 or 2 HY genes.

3.1.1 Selection mechanism

The evolutionary process uses a local selection mecharssm a
described in [21]. The population is placed into a circulaan A
tournament scheme is applied to contiguous sub-populagayh-
bourhoods of size 4. For example, suppose we have a poputdtio
size 8 with members [a,b,c,d,e,f,g,h] and the ttest menibehe

rst subset of 4 members ([a,b,c,d]) is found to be individoiand
the ttest member in the second subset of 4 members ([€]f,g,h
is found to be individual h, then the resulting selecteesotrex
[c,c,c,c,h,h,h,h]. An offset of size 4 is further used toedetine
where at the beginning of the array the selection procesmbeg
This ensures a spread in the gene pool, i.e. it enhancesidywer

3.1.2 Mutation and crossover

The selectees are then subject to mutation and cross-over op
erators. The resulting genomes become the offspring member
These offspring members then replace the population menfiber
the subsequent evolutionary generation. In order to ctéateff-
spring pool of chromosomes, two population members areerhos
at random from the selectee chromosome pool. The evolutiona
operators are then applied to these two members and thesgroce
repeats until the size of the offspring vector matches thmifadion
size. For a given selected pair of chromosomes, genes aba-pro
bilistically selected at a rate of 0.01 to be mutated. If theyreal-
valued, the Gaussian operaglff); ) is used; each parameter is
self-adapted in the manner described in [1]. If it is boolealued,
itis simply ipped. Genes are also probabilistically exogad at a
rate of 0.1.
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Figure 6: A visualisation of an evolved undulatory agent un@rtaking a 180 turn together with a raster plot indicating greater levels
of spring compression on the side ipsilateral to turning. Geater levels of compression are marked by deeper levels ofd' or more
negative value. Left-right spring compressions are furthe shown to occur in “"descending waves', as highlighted by thwvo diagonal
arrows. The two waves are out of phase and correspond to the aerlying undulatory movement process.
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Figure 7: A visualisation showing an evolved agent tracking
target moving in a gure-of-8 pattern. The upper-right circ ular
loop highlights how the agent which has no mechanism to slow
down overtook and circled around the target.

4. RESULTS

Results from Scenarios (a) and (b) in which the animat had a
symmetric body morphology are presented in Section 4.1ulRes
for Scenario (c) in which the agent had an asymmetrical booiy m
phology are presented in Section 4.2.

4.1 Scenarios (a) and (b)

At the end of evolution in Scenario (a), the best performirdj-i
viduals could undertake ef cient forward motion by swimmian
average of 3.494 body lengths in 1600 simulation steps assegp
to an average of 0.5898 body lengths before any evolution-com
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Figure 8: Medians together with upper and lower quartiles of
neural symmetry throughout evolution (see Eq. 4 for de ni-
tion). Symmetry evolves to greater levels (smaller valuesh
Scenario (b) (forward motion plus turning behaviour) than in
Scenario (a) (forward motion only).

menced. This means that the animats which initially movelgt on
marginally evolved the capability of propelling themselsigni -
cantly forward.

In Scenario (b), the best performing individuals were farthble
to turn successfully. An example of this is illustrated irg.Fé
where an evolved animat is visualised performing a complete
turn. The turning skills of the animat are further demortstilan
Fig. 7 where it is shown tracking a moving target.

The metric de ned in Eq. 4 was used to compare neural symme-



Figure 9: Example of an evolving neural structure: a visualsation showing how the spatial distribution of neurons evoled to become
bilaterally symmetric for the ttest individual of a given S cenario (a) experiment. The blue “ladder-like' structure represents the seg-
mented body morphology. In each visual, the top-right numbeindicates the current evolutionary generation. Red sphees represent
excitatory neurons, yellow spheres inhibitory and grey lires are interneuronal connections. As shown, evolution hagsulted in zero
coupled connections between the descending neurons, a he@BG structure and left-right descending pathways that ex¢nd through
the whole length of the animat.
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Figure 10: Plots showing the average left/right descendingonnectivity emergence for left and right biased body asymmitries. As
shown, in each case fewer descending connections evolve be tonvex side of the body asymmetry. Statistically, diffeamces in
left/right DES connectivity in the left plot have a p-value of 0.04, in the right plot 0.07.

try between both scenarios. The analysis reveals that wieeart- have no coupled connections between descending neuroris. Th
imat is required to turn as well as locomote forwards, nestraic- suggests that the required neural dynamics evolved pureiy f
tures evolve to be more symmetrical, as shown in Fig. 8. llhbot the head-CPG structure. This generates driving oscijlator-
scenarios, both full descending neural connectivity anebaliCPG rent through the left and right descending pathways, resulh
structure were observed to evolve and become part of theophen a wave of activation propagating through the animat's meye-
type. Moreover, Fig. 9 shows that the best individuals ewdty tem. This type of architecture in which control becomes latgad



by a higher-level structure (i.e. the head-CPG unit) anttiliged
by lower-level components (i.e. descending neuronal paylsivis
also shown to be advantageous in a mobile robot platform [R0]
example of an evolving architecture from Scenario (a) inalised
in Fig. 9.

4.2 Scenario (c)

With the introduction of aresting body asymmetryeural ar-
chitecture evolves in a way that can still endow the agenh wit
functional bilateral control. Statistical analysis inalies that the
evolved architectures are biased to compensate the asyynafet
the body plan. Neurons arrange themselves on the concavefsid
this asymmetry. Moreover, descending connectivity ev@kswch
that there are fewer descending connections on the condex si
These differences in descending connectivity are sigmitc the
p-value levels of 0.04 and 0.07 for the left and right biasedyb
asymmetries respectively as shown in Fig. 10. Two evolveldiar
tectures shown in Fig. 11 indicate that this difference iscéading
connectivity stems from a breakage in the pathway from tleelhe
CPG unit on the convex side. This means that propagatinglasci
tions from the head-CPG on this side are prevented from iegch
subsequent motors. Further analysis reveals that thesesr(en-
closed with dashed rectangles in Fig. 11) enter a tonicalivex
state which has the effect of continuously straightenirey ahi-
mat into an upright orientation. On the concave side of thdybo
the pathway from the head-CPG is intact and activation [ates
downwards. The combined effect of propagating oscillaion
the concave half and tonic activation in the convex halisiiely
enables the animat to maintain a level of forwards loconedtivc-
tioning as visualised in Fig. 12.
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Figure 11: Examples of asymmetrical neural structures for
left- and right- biased body asymmetries. The ellipses high
light how descending connectivity from the head-CPG struc-
ture is broken on the convex side of the body asymmetry. This
largely re ects differences in descending connectivity aplot-
ted in Fig. 10. This results in a lack of oscillatory input cur
rent from the head-CPG structure meaning that motor neurons
(dashed rectangular regions) yield tonic output. Asymmetical
body morphologies are shown in a straight posture for ease of
visualisation.
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Figure 12: Upper: movement of body; a visualisation showing
how for an agent with a left-biased body asymmetry, movement
proceeds by initially straightening the animat before it urder-
takes movement in a forwards direction; arrow indicates time.
Lower: the corresponding left/right motor outputs. As shown,
the right motors become tonically activated while the left no-
tors oscillate.

5. CONCLUSIONS

Our experimental results reveal that neural geometry besom
aligned to body morphology in order to facilitate the getieraof
motor primitives. The results indicate the following.

1. Arti cial evolution favours a symmetrical layout in thesno-
ral structure, which appears to improve swimming ef ciency

2. The following simulations in which turning behaviour was
additionally required interestingly indicate that, as tihetor
task becomes richer, an even higher level of symmetry be-
comes advantageous. This is possibly due to the need for
better exploitation of muscle synergies during the turning
process.

3. The third experiment, in which the body plan was asymmet-
rical, demonstrated how the nervous system places itself to
compensate for the asymmetrical body. By doing so, forward
swimming ef ciency is maximised.

Thus the neural structure evolves to exploit both the regida
of the body and the functionality required to achieve loctioro
When the body morphology is symmetrical, the neural gegmetr
exploits the morphological tness that this can provide isvém-
ming task; when the body plan is asymmetrical, the neuraingeo
etry compensates to achieve the required movements. Qultsres
suggest that, at the evolutionary level, the interplay leetwneural
architecture and body morphology is a fundamental driviregima
anism, even at the basic level of these simulations.

In summary, this study addressed the importance of couplag
tween neural structure and body plan morphology. We haweisho
this in the context of an arti cially evolved sh-inspirednémat.
Importantly, neural geometry, which is traditionally iged in the
Neuro-evolutionary literature, has been shown to be of kgyoir-
tance in terms of how it evolves to relate functionally to yodor-
phology. A model in which the neural structure is embeddetiwi
the substrate or body has allowed us to examine the coupéng b
tween both. We can sensibly postulate that in animal orgéiois,
the combined evolution of both allows for the exploitatidnas-
pects of morphology and aspects of control; we infer thatstriong
coupling allows evolution to hone in on a richness of behawio
generation.

Extensions of the model include movements in the coronalepla
which can further be evolved in addition to movements in tgits



tal plane. The introduction of energy metrics has also thergal
to reveal more ef cient neural structures as in [14]. A motk a
vanced neural structural representation might also betadpfor
example, HyperNEAT [27] which — like the model presented in
this paper — uses structural information to encode neunraheo-
tivity. An advantage of using HyperNEAT is its capacity teelg
several plausible emergent properties including symneetdyrep-
etition. At a behavioural level, the simulations can be ntadsdicit

a richer variety of behaviours like variation in speed or@&rcog-
nitive tasks. Finally, the modelling of plastic neural centivity,
as those proposed in [26], could reveal more subtle interabe-
tween plastic neural architectures and body morphologies.
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